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ABSTRACT 

Geohazards are a significant threat to pipeline systems. In 
recent years, pipeline geohazard management has evolved 
toward a quantitative definition of threat severity (Rizkalla and 
Read, eds., 2019). The quantitative geohazard assessment 
framework is robust but flexible to accommodate models and 
engineering judgment required to inform estimations within the 
framework. For preliminary system-wide screening, threat 
severity (or susceptibility) estimates are often based on expert 
judgment, sometimes with limited information as a basis. This 
necessitates adoption of reasonable conservatism and 
recognition that accuracy of susceptibility estimates for 
geohazards is at best order-of-magnitude at the screening stage. 
As a project or pipeline system matures, site-specific analysis 
based on detailed characterization and monitoring data should 
replace preliminary screening results. To achieve this functional 
upgrade, predictive models that inform susceptibility estimates 
are required. These mechanistic models and the data acquisition 
and processing systems to feed them must be adaptive to account 
for inherent complexities of in situ conditions, and ideally must 
operate in near-real time to function effectively as predictive 
tools. Understanding the essential variables associated with 
these models is a first step in developing an integrated system 
that can ultimately incorporate artificial intelligence and 
machine learning coupled with “big data” to develop an early 
warning system.  
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1. INTRODUCTION  
Geohazards are a significant threat to pipeline systems, 

particularly those operating in challenging mountainous terrain 
with severe climatic and seismic conditions. Major pipeline 
operators in such settings have invested significantly in 
approaches to identify, characterize, and evaluate the threat 
severity posed to pipeline infrastructure by geohazards [1]. 
Nonetheless, geohazard events resulting in loss of containment 
from operating pipelines continue to occur and impact pipeline 
operations. 

Several generations of geohazard assessment approaches 
and associated models have been proposed and adopted by 
different pipeline operators. These approaches include 
qualitative, semi-quantitative and quantitative assessment 

frameworks, which have been used in different settings with 
varying degrees of success to identify and characterize 
significant geohazard sites. However, in general, predictive 
capabilities of these approaches are limited. 

Quantitative predictive models for credible geohazard 
mechanisms are essential components of an integrated system 
for geohazard management within an overall risk management 
strategy. This paper reviews important aspects of pipeline 
geohazard assessment and discusses key considerations related 
to an integrated system that incorporates quantitative predictive 
models for geohazard management. 
 
2. GEOHAZARD ASSESSMENT METHODS 

Several approaches for geohazard assessment have been 
generally accepted by regulatory agencies in Canada and 
elsewhere, including qualitative risk matrix approaches, semi-
quantitative index-based approaches, and quantitative 
approaches. However, in order to incorporate the results of 
geohazard assessment into overall risk assessment of all threat 
categories affecting a pipeline, pipeline susceptibility to a 
geohazard event must be expressed in “absolute” terms (e.g., 
annual probability of failure per site or per unit length). 
“Absolute” in this context should not be misunderstood as a 
measure of precision, but is simply the form of the hazard or risk 
expression metric. It is important to recognize that estimates 
expressed in “absolute” terms have associated uncertainty that 
must also be expressed along with the assessment results [1]. 

 
2.1 Pipeline Risk Assessment Evolution 

The evolution of pipeline risk assessment toward a 
quantitative “absolute” estimate of risk is described in the book 
“Pipeline Risk Assessment – the Definitive Approach and its 
Role in Risk Management” [2]. The author advocates 
abandoning all scoring (point assignment) systems outlined in 
predecessor publications, adopting the probability of failure triad 
(exposure, mitigation and resistance), incorporating OR and 
AND logic to combine hazard probabilities, using both 
measurements and estimates to replicate a Subject Matter 
Expert’s (SME’s) decision processes, and calculating hazard 
zones to drive consequence of failure estimates. The refined 
framework for modeling pipeline risk is shown in Figure 1. 
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FIGURE 1: FRAMEWORK FOR MODELING PIPELINE RISK FROM ALL THREAT CATEGORIES [2] 

This approach deviates from two previous risk assessment 
methodology categories: 1) scoring systems designed for simple 
ranking of pipeline segments, and 2) statistics-based quantitative 
risk assessments (QRAs) used in more robust applications for 
site-specific situations. Approaches of the first type were deemed 
to be limited in their ability to accurately measure risk and to 
meet Integrity Management Program (IMP) regulatory 
requirements, and those of the second type were deemed to be 
costly and generally ill-suited for system-wide assessment of 
long linear pipeline assets. The use of weighting factors in 
scoring systems was also shown to obscure real risks and to 
interfere with risk management, and it was recommended that 
their use be discontinued: 

“Terminology has been getting in the way of understanding 
in the field of risk assessment… for true understanding of risk 
and for the vast majority of regulatory, legal, and technical uses 
of pipeline risk assessments, [“absolute”] numerical risk 
estimates in the form of consequence per length per time are 
essential. Anything less is an unnecessary compromise… We 
should take an engineering- and physics-based approach rather 
than rely on questionable or inadequate statistical data.” [2] 

This refined approach to pipeline risk assessment considers 
probability broadly as a “degree of belief,” and estimates 
“absolute” annual failure probabilities per length directly based 
on available information coupled with SME judgment and 
observations. The estimated failure probabilities have associated 
uncertainty but provide an unambiguous basis for decision-
making without obscuring risk results with unnecessary 
complexity associated with scoring systems. 

A key concept in this reframing of risk assessment is the 
adoption of engineering- or physics-based models of relevant 
phenomena affecting pipeline integrity. The underlying premise 
is that the best way to predict future events is to understand and 

adequately model the mechanisms that lead to events. This 
viewpoint is aligned with the evolution of geohazard assessment 
addressed in the next section. 

 
2.2 Geohazard Assessment Evolution 

Geohazard assessment has seen a progressive shift from 
qualitative observation-based approaches to quantitative 
approaches that blend observations, data and modeling to 
estimate “absolute” failure probabilities.  

The geohazard assessment methodology [3, 4] used for 
several recent major pipeline projects is based on the approach 
originally accepted as fit-for-purpose in the National Energy 
Board (NEB) Reason for Decision regarding the Mackenzie Gas 
Project in Canada [5]. This originally semi-quantitative index-
based methodology described in the 2008 ASME book “Pipeline 
Geo-Environmental Design and Geohazard Management” [4] 
has been progressively refined to produce estimates of pipeline 
susceptibility in quantitative terms, and to address various 
aspects of geohazard assessment. A detailed description of the 
refined quantitative methodology is included in the 2019 ASME 
book “Pipeline Geohazards: Planning, Design, Construction and 
Operations” [6].  

In addition, several conference papers at the International 
Pipeline Conference (IPC) and the International Pipeline 
Geotechnical Conference (IPG) have been published to address 
specific aspects related to this evolution.  

The important role of engineering judgment by Subject 
Matter Experts (SMEs) in conducting geohazard assessment is 
emphasized in a paper “Bridging the gap between qualitative, 
semi-quantitative and quantitative risk assessment of pipeline 
geohazards – the role of engineering judgment” [7]. While this 
essential role continues to evolve, the role of the SME in light of 
rapid technological developments in artificial intelligence (AI) 
and machine learning (ML) is at the heart of recent technical 
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discussions and workshops, such as the Banff Pipeline 
Workshop in April 2023 [8].  

A common misconception of the use of a quantitative 
geohazard assessment approach that produces “absolute” 
estimates of pipeline susceptibility is the appearance of precision 
in the estimated result. The paper “Framing uncertainty in 
pipeline geohazard assessment for integrity management and 
iterative risk assessment” [1] describes the essential nature of 
estimating and reporting uncertainty alongside quantitative 
numeric results from geohazard assessment. The paper also 
highlights various aspects of the geohazard management 
activities associated with the Camisea pipeline system in Perú, 
and the advancements toward a quantitative geohazard 
management strategy.  

The context of a geohazard assessment is important to 
understand prior to planning an assessment strategy. While most 
literature on pipeline geohazard assessment is focused on 
pipeline integrity during pipeline operations, specifically the 
probability of loss of containment from the pipeline, another 
important context is geohazard management during construction, 
with an emphasis on construction safety and temporary 
mitigation measures to address potential geohazard threats. The 
paper “Pipeline geohazard assessment - Bridging the gap 
between integrity management and construction safety contexts” 
[9] provides commentary on reinterpreting system-wide 
geohazard assessment results from a pipeline integrity context 
for new pipelines as a starting point for determining construction 
safety mitigation requirements. 

Finally, the linkage between geohazard assessment and 
quantitative risk assessment (QRA) of all threat categories is 
explored in the paper “Pipeline geohazard target susceptibility 
threshold – a reliability-based rationalization” [10]. The 
principles of reliability-based design and assessment of onshore 
pipelines described in Annex O of the Canadian Standard 
CAN/CSA-Z662-19 [11] are used as a basis for establishing and 
iteratively checking target susceptibility thresholds for 
geohazard assessment. The paper also explains the process to 
relate per site susceptibility values to reliability-based allowable 
probability of failure (PoF) values for a specified sliding 
evaluation length compatible with assessment of other threat 
categories. This approach has been used in several new pipeline 
projects, demonstrating the compatibility of quantitative 
geohazard assessment results as input to QRA software such as 
PIRAMID® or other similar software products. 

The governing equation to estimate pipeline susceptibility 
associated with an individual geohazard mechanism i at a given 
segment of the pipeline is as follows: 

𝑆𝑆𝑖𝑖 = 𝐼𝐼𝑖𝑖 ∙ 𝐹𝐹𝑖𝑖 ∙ 𝑉𝑉𝑖𝑖 ∙ 𝑀𝑀𝑖𝑖                                (1) 

where 

Si Pipeline susceptibility (or annual PoF) due to 
occurrence of the geohazard, 

Ii Initiation feasibility of the geohazard representing 
the degree of certainty that a geohazard occurrence 
at a specific location is feasible or infeasible, 

Fi Frequency of occurrence of the geohazard 
representing the number of events per year based 
on an estimated recurrence interval of geohazard 
triggers (e.g., rainfall, seismicity) or progressive 
development of a critical state (e.g., progressive toe 
erosion, episodic movement), 

Vi Vulnerability of the pipeline to an occurrence of 
the geohazard representing the expected degree of 
damage, or conditional probability of exceeding a 
prescribed limit state, from the pipeline being 
subjected to the geohazard (accounting for spatial 
and temporal conditional probabilities of soil-pipe 
interaction), and 

Mi Mitigation factor representing the ameliorating 
effects of mitigation measures installed during 
construction and, if necessary, during operation of 
the pipeline to reduce impact of the geohazard. 

At an identified geohazard location, the first three 
assessment parameters are each assigned conditional probability 
values between 0 and 1 based on observational evidence from 
terrain analysis, and engineering calculations incorporating 
estimated material properties and route conditions, including 
topography and possible triggering mechanisms. The resulting 
value of pipeline susceptibility is considered to be an order of 
magnitude estimate of PoF (or FLoC) prior to mitigation (i.e., 
pre-mitigation susceptibility). The mitigation factor required to 
reduce the estimated pipeline susceptibility to an acceptable 
level is used to inform selection of mitigation. 

The collection of conference papers described above does 
not delve deeply into the models and algorithms used to populate 
the various parameters in the quantitative geohazard governing 
equation, leaving the selection of appropriate models and 
algorithms to the practitioner based on the specific requirements 
of a project, and information available. Chapter 13 of the 2019 
ASME book “Pipeline Geohazards: Planning, Design, 
Construction and Operations” [12] offers summaries of 
published algorithms for each of 36 geohazard mechanisms 
ranging from landslides to karst collapse. Many of these are 
closed-form solutions that can be easily implemented in a GIS 
environment. The following section offers more insight into 
different types of models. 

 
3. SLOPE STABILITY AND DEFORMATION MODELS 

While landslides and slope stability issues represent only 
one of several categories of geohazards, there have been 
considerable developments on this topic. Therefore, examples of 
models provided in this section focus on slope stability and 
deformation, but the principles are transferable to models of 
other geohazard mechanisms.  
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3.1 Mechanistic Stability Models 
Mechanistic models are mathematical abstractions of 

physical phenomena or processes and are seldom an exact 
representation of a given phenomenon or process, especially if it 
is complex. Consequently, model error is an important 
consideration, and must be recognized in geohazard assessment: 

 
“Essentially, all models are wrong, but some are useful… 

the scientist cannot obtain a ‘correct’ one by excessive 
elaboration. On the contrary following William of Occam he 
should seek an economical description of natural phenomena.” 
[13, 14] 

 
Mechanistic models are differentiated from purely empirical 

relations (or weights-of-evidence models) by the underlying 
objective of replicating a process through physics-based 
principles. Figure 2 shows a classic example of the closed-form 
solution for the factor of safety of a plane translational slip with 
slope parallel seepage [15], which can be derived from first 
principles considering the slope angle, in situ and saturated unit 
weight of the soil, unit weight of water, depth of groundwater 
table, depth of sliding plane, and effective strength parameters 
for the soil (cohesion c´ and friction angle φ´).  

 
FIGURE 2: MECHANISTIC MODEL OF TRANSLATIONAL SLIP 
WITH SLOPE PARALLEL SEEPAGE [15] 

 
This relatively simple mechanistic model is a reasonable 

representation of long, uniform slopes with soil materials that 
tend to slide parallel to the slope due to natural layering, 
weathering profile (e.g., residual soils), or other structural 
controls. Variations of this model have been developed to 
account for such conditions as seepage that is not parallel to the 
slope [15], three-dimensional edge effects [17], and pseudo-
static loading from earthquakes [18]. These models are all 
framed around limit equilibrium analysis of shear strength versus 
shear stress to determine a factor of safety against initiation of 
slope instability, in this case slope-parallel translational slip. 

Using the model in Figure 2 as an example, the model 
parameters can be classified as either static (e.g., slope angle, 
saturated unit weight of soil, unit weight of water, depth of 
sliding plane) or dynamic (depth of groundwater table, effective 
cohesion and friction angle). The effective cohesion and friction 
angle are each a function of normal stress if the soil material 
exhibits a non-linear Mohr-Coulomb failure envelope under 
drained conditions, or can be considered constant (“static”) if the 
envelope is linear. Normal stress is a function of the depth to 
groundwater table and the depth of the failure plane. Therefore, 
some parameters are independent, and others are not. A physics-
based model correctly captures the relations between parameters 
and recognizes the interdependency of some parameters. 

Another example of a physics-based model of slope stability 
is for plane failure of a rock slope involving a tension crack and 
a sliding plane inclined less steeply than the slope face angle 
[19]. The model geometry is illustrated in Figure 3. There are 
two scenarios considered: (a) the tension crack occurs in the 
upper surface of the slope, and (b) the tension crack occurs in the 
slope face. The geometry of a plane failure and the groundwater 
conditions can be completely defined by four dimensions (H, b, 
z and zW) and by three angles (ψf , ψp and ψs). These simple 
models, together with the groundwater conditions, seismic 
ground motion concepts and mitigation options allow stability 
calculations to be carried out for a wide variety of conditions. 

 

 
FIGURE 3: MECHANISTIC MODEL OF PLANE FAILURE WITH 
TENSION CRACK [19] 
 
The equation for factor of safety is the ratio of resisting force to 
driving force, given as follows: 
 

𝐹𝐹𝑆𝑆 =
𝑐𝑐𝑐𝑐 + �𝑊𝑊 cos𝜓𝜓𝑝𝑝 − 𝑈𝑈 − 𝑉𝑉 sin𝜓𝜓𝑝𝑝� tan𝜙𝜙

𝑊𝑊 sin𝜓𝜓𝑝𝑝 + 𝑉𝑉 cos𝜓𝜓𝑝𝑝
 

 
𝑐𝑐 =  (𝐻𝐻 + 𝑏𝑏 tan𝜓𝜓𝑠𝑠 − 𝑧𝑧) cosec𝜓𝜓𝑝𝑝 
𝑈𝑈 =  0.5 𝛾𝛾𝑊𝑊𝑧𝑧𝑊𝑊(𝐻𝐻 + 𝑏𝑏 tan𝜓𝜓𝑠𝑠 − 𝑧𝑧) cosec𝜓𝜓𝑝𝑝 
𝑉𝑉 =  0.5 𝛾𝛾𝑊𝑊𝑧𝑧𝑊𝑊2  
 

(3) 

(2) 
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For scenario (a) 

𝑊𝑊 =  𝛾𝛾𝑟𝑟��1 − cot𝜓𝜓𝑓𝑓 tan𝜓𝜓𝑝𝑝��𝑏𝑏𝐻𝐻 + 0.5 𝐻𝐻2 cot𝜓𝜓𝑓𝑓�
+ 0.5𝑏𝑏2�tan𝜓𝜓𝑠𝑠 − tan𝜓𝜓𝑝𝑝�� 

 
and for scenario (b) 

𝑊𝑊 =  0.5 𝛾𝛾𝑟𝑟𝐻𝐻2 ��1 −
𝑧𝑧
𝐻𝐻
�
2

cot𝜓𝜓𝑝𝑝 �cot𝜓𝜓𝑝𝑝 tan𝜓𝜓𝑓𝑓 − 1�� 
 
where 
𝑐𝑐 = cohesion (kPa) 
𝜙𝜙 = internal friction angle (degrees) 
𝛾𝛾𝑟𝑟 = unit weight of rock (kN/m3) 
𝛾𝛾𝑤𝑤 = unit weight of water (kN/m3) 
𝑐𝑐 = area of sliding plane (m2/m) 
𝐻𝐻 = slope height (m) 
𝑧𝑧 = tension crack depth (m) 
𝑧𝑧𝑊𝑊 = depth of water in tension crack (m) 
𝜓𝜓𝑠𝑠 = upper slope surface angle (degrees) 
𝜓𝜓𝑓𝑓 = slope face angle (degrees) 
𝜓𝜓𝑝𝑝 = sliding plane angle (degrees) 
𝑈𝑈 = water forces acting on sliding plane (kN/m) 
𝑉𝑉 = water forces acting in tension crack (kN/m) 
𝑊𝑊 = weight of sliding block (kN/m) 
 

3.2 Surrogate Stability Models 
Alternative empirical models for slope stability have been 

proposed whereby important parameters associated with slope 
stability are identified and assigned weighting factors to 
represent their relative significance. Weighting factors are 
sometimes determined through multi-linear regression assuming 
all variables are independent. While this approach is used for the 
prediction of liquefaction-induced lateral spread displacement 
[20], this assumption may be incongruent with physics-based 
models relating important parameters for slope stability analysis.  

 

 
FIGURE 4: IDEALIZED MODEL OF ROTATIONAL FAILURE 
OF A SIMPLE UNIFORM SLOPE [21] 

 
Other more complex relations can be determined through 

multi-variate analysis, ideally producing a function that 
reasonably approximates the results from a physics-based model 
within a given range of the underlying variables. An example of 
this type of analysis is a best-fit explicit equation for safety factor 

of simple uniform slopes subject to rotational failure [21] (Figure 
4) based on stability charts (Figure 5) from Taylor [22].  

 
FIGURE 5: STABILITY CHART FOR SIMPLE UNIFORM 
SLOPES SUBJECT TO ROTATIONAL FAILURE [22] 
 

The resulting empirical equation is given as follows: 
 

𝐹𝐹 =
tan𝜙𝜙

tan �−𝑏𝑏 − (𝑏𝑏2 − 4𝑎𝑎𝑐𝑐)1 2⁄

2𝑎𝑎 �
 

 
where 
𝑎𝑎 = 5.94466 × 10−5 
𝑏𝑏 = −0.00807 + 3.41 × 10−5𝛽𝛽 − 𝜆𝜆𝜆𝜆 180⁄  
𝑐𝑐 = 0.042186 + 0.004905𝛽𝛽 − 6.44 × 10−5𝛽𝛽2

+ 4.07 × 10−7𝛽𝛽3 

𝜆𝜆 =
𝑐𝑐′

𝛾𝛾𝐻𝐻 tan(𝜙𝜙) 

𝑐𝑐′ = soil cohesion (kPa) 
𝜙𝜙 = internal friction angle (degrees) 
𝛾𝛾 = unit weight of soil (kN/m3) 
𝐻𝐻 = slope height (m) 
𝐹𝐹 = safety factor with respect to shear strength 
𝑆𝑆𝑆𝑆 =  𝑐𝑐′ 𝛾𝛾𝐻𝐻𝐹𝐹 = ⁄ stability number 
𝜙𝜙𝑚𝑚 =  (tan𝜙𝜙) 𝐹𝐹 = ⁄  mobilized friction angle (degrees) 
 

The proposed equation (Eq. 6) is applicable to the case of 
homogeneous slopes without seepage as well as the special cases 
involving complete submergence, complete sudden drawdown, 
steady seepage, and zero boundary neutral force. Validation of 
the proposed equation was performed by comparing its results 
with those of existing graphical and analytical methods for 
rotational failure, including those of Taylor [22] and Janbu [23]. 
The results show that the proposed equation is accurate within 
the range of mobilized friction angle, stability number, and slope 
angle considered. A more accurate formulation for mobilized 
friction angle, which reduces model error, is also included in the 
paper [21]. 

Simple limit equilibrium models have been incorporated 
into numerical simulations of study areas [24, 25] using a 3D 
bare-earth Digital Elevation Model (DEM) to represent ground 
surface topography, and linking rainfall to a change in 

(4) 

(5) 

(6) 
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groundwater table through a flow accumulation model, 
accounting for natural basins and gullies. A more realistic 
rainfall infiltration model (e.g., Horton) is contingent on a 
number of factors including degree of saturation of the soil, 
hydraulic conductivity of the soil and its variability with depth 
or soil conditions [26]. In this integrated system of models, the 
effects of rainfall intensity can be evaluated in terms of change 
in factor of safety. Predictions of slope instability were compared 
to observations of instability, with reasonable correlation, 
indicating some degree of model error associated with one or 
more of the integrated models. Nonetheless the relations between 
parameters in the models were considered. The deficiency in the 
model performance in this case was possibly due to a higher 
degree of complexity or variability in materials and material 
properties, or oversimplification of the relation or time-
dependency of change in groundwater table with rainfall 
intensity. Variability in rainfall intensity over time within the 
study area was also a possible contributor to model error.  

 

 
FIGURE 6: GLOBAL RAINFALL INTENSITY-DURATION 
THRESHOLDS FOR SHALLOW SLOPE INSTABILITY [27] 
 

Empirical models have been developed to link rainfall 
inputs to the onset of slope instability. Guzzetti et al. [27] lists 
several relations that consider various precipitation attributes for 
a given area, including intensity, duration and antecedent rainfall 
total over different time periods (Figure 6). Findings suggest that 
for areas of similar topography and geological conditions, such 
models may be useful as inputs to early warning systems, but 
their utility is limited by the fact that the specific geologic 
attributes of an area are not considered directly. Consequently, 
the predictive system relies on historical observations of 
previous instability events to correlate the various rainfall 

parameters considered. Significant changes in geology or 
topography along a linear infrastructure route would require a 
geotechnical SME to parse the route into areas with similar 
surface and subsurface conditions, then use information from 
those parsed areas in combination with climatic data to calibrate 
such a model. In areas with limited historical slope instability 
events, reliable calibration of a model might be challenging.  

 
3.3 Deformation Models 

Mechanistic and surrogate models in the literature tend to 
focus on factor of safety estimates, with the onset of slope 
instability coincident with a factor of safety of unity. Factor of 
safety is based on the ratio between shear strength and shear 
stress of the soil or rock material comprising a slope. The 
underlying constitutive model in these analyses is implicitly an 
elasto-plastic stress-strain response, with the pre-peak portion of 
the stress-strain curve typically defined by Young’s modulus and 
Poisson’s ratio, or equivalent elastic moduli (e.g., bulk and shear 
modulus). The post-peak response may be considered perfectly 
plastic, brittle plastic, strain-softening, or strain hardening 
depending on the materials involved. The amount of plastic 
deformation depends on the nature of this post-peak response. 
For materials with strength made up of cohesion and frictional 
resistance, the sudden loss of cohesion may result in a residual 
strength that is insufficient to retain the failed material at its 
original slope angle, resulting in very large deformation or long-
runout landslide events. Predicting post-peak deformation is 
challenging without sufficient material characterization and 
spatial delineation of geologic conditions in a geologic model. 

Another type of material response that generates 
displacement is creep. In some models, creep rate is proportional 
to the magnitude of differential stress (or shear stress) that a 
material experiences. A material may undergo primary creep, 
reach a relatively stable secondary creep stage, and ultimately 
reach a tertiary creep stage that accelerates to creep rupture at 
some critical strain. This type of behaviour may be sensitive to 
moisture content of the soil, with a threshold moisture content 
required to initiate the creep process. Creep tests can be 
conducted to determine the creep characteristics of a material 
and the relation between creep rate and moisture content, clay 
content, or other material constituent.  

Even without shear stress dependent creep, changes in 
moisture content may result in changes in bulk and shear 
modulus of a material, resulting in intermittent or episodic 
downslope movement as the slope material experiences wetting 
and drying cycles that change the moisture content of the soil. 
This behaviour can be modeled once the soil material 
characteristics are understood. 

Seismically-induced deformation can be estimated using 
pseudo-static models that relate the ground acceleration caused 
by an earthquake to the static factor of safety of a slope with 
known material properties and groundwater table. The work by 
Jibson et al. [28] provides an example of estimating Newmark 
displacement associated with a design seismic event determined 
through geologic and seismic characterization of a site. The 
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underlying model for Newmark analysis is a sliding block on an 
inclined plane subjected to horizontal and vertical acceleration 
generated by a seismic event. The model is simplistic, but widely 
used to estimate slope displacement. The displacement estimates 
in conjunction with information on the area of slope movement 
in relation to a pipeline allows direct estimates of pipe strain 
related to ground movement. 

 
4. MONITORING 

Slope displacement or deformation is unquestionably as 
significant as the point of onset of instability. For this reason, 
ground deformation monitoring using inertial mapping unit/in-
line inspection (IMU/ILI) of the pipeline in combination with 
remote methods (differential LiDAR, InSAR) or installed 
instrumentation (slope inclinometers, fibre optics, survey pins, 
robotic optical survey systems, crack deformation gauges, 
tiltmeters, GPS sensors) have been used. With some exceptions, 
most monitoring systems are intermittent with a delay between 
readings and processing time required. Near real-time 
monitoring is the ideal standard to relate changes in driving 
forces, such as precipitation measured by a dedicated weather 
station, to changes in slope deformation response directly. This 
allows development of a cause-effect relationship that can be 
used in a predictive sense as a system matures. 

The Turtle Mountain Monitoring Project (TMMP) is an 
example of a near real-time integrated monitoring system tied to 
an early warning system and emergency response protocols [29]. 
The project was initiated in 2003 at the site of the 1903 Frank 
Slide in southern Alberta, Canada. The 1903 event, a rock 
avalanche, involved 30 million cubic metres of rock debris that 
took 90 seconds to reach its final destination in the valley bottom, 
killing over 70 people in the process. The prominent south peak 
of Turtle Mountain was later identified as a possible source for a 
second rock avalanche with an estimated volume of about 8 
million cubic metres. In 2003, the valley bottom in the shadow 
of Turtle Mountain contained residences, utilities, a highway, 
and a railway mainline along the Crowsnest River. 

The TMMP monitoring system comprised a robotic optical 
survey system with reflector targets, permanent GPS sensors, 
extensometers and crack gauges across major fissures at the top 
of the mountain, tiltmeters, permanent photogrammetric targets, 
a microseismic monitoring network, a thermistor string to check 
for alpine permafrost, stream outflow gauges at a spring at the 
toe of the mountain, and a dedicated weather station to monitor 
rainfall, temperature, wind speed and other climatic parameters. 
The philosophy of this integrated monitoring network was to 
detect indicators of rock mass instability and the climatic and 
seismic conditions driving the rock mass response. Monitoring 
data were recorded hourly and transmitted by radio to a central 
database housed at the Frank Slide Interpretive Centre in the 
valley bottom. Alarm thresholds were established for each of the 
instruments and warning logic was developed based on the suite 
of instruments. The warning system was then set to communicate 
with the local Emergency Response Plan for the area. The project 
cost $1.1 million and was operated by the Government of Alberta 

for several years, until the system was replaced with a ground-
based InSAR system in 2009, and another in 2014. 

Another example of an integrated monitoring system is the 
one installed in response to a 2016 loss-of-containment incident 
on Husky Midstream’s NPS 16 pipeline on the south slope of the 
North Saskatchewan River, Canada. The pipeline buckled at a 
mid-slope overbend as a result of ground movement associated 
with a large ancient landslide complex. In conjunction with 
pipeline replacement at the site, a robust state-of-the-art 
instrumentation monitoring program was implemented by Husky 
Midstream, which included real-time geotechnical 
instrumentation, high fidelity distributed fiber optic sensing 
(HDS), repeat ILI and weather data monitoring to identify, 
evaluate and monitor areas of ground and pipeline movement so 
that potential impacts to the pipeline could be mitigated [30]. An 
early-warning system that included alarm thresholds was also 
developed to identify when to proactively shut-in the pipeline. 

The HDS monitoring comprised strain, acoustic and 
temperature sensing that revealed an excellent correlation to the 
geotechnical, ILI and weather station monitoring data on the 
actively moving landslide complex. The HDS monitoring 
showed increased strain magnitudes following a significant 
rainfall event that correlated to an acceleration in survey 
monument and slope inclinometer movement, and was also 
correlated to ILI locations of bending strain. Accumulated strain 
magnitudes also correlated to LiDAR change detection results 
and visual observations of the ground surface. Acoustic and 
strain accumulation was also correlated to construction activity 
on the right-of-way. 

While the installation of sophisticated integrated monitoring 
systems such as the TMMP or Husky examples is not feasible 
everywhere along linear pipeline systems, the examples illustrate 
the utility of an integrated system of data collection and analysis 
to produce actionable results in near-real time. These types of 
systems may be suited for site-specific application in identified 
critical areas. For general overland segments of pipeline, repeat 
IMU/ILI surveys (Figure 7), repeat LiDAR, InSAR, repeat 
photogrammetry, and climatic and seismic monitoring, along 
with new technologies such as high-fidelity fiber optic sensing 
installed as a continuous linear sensor along the pipeline provide 
a means of collecting corroborating datasets, albeit with 
disparate data collection schedules. Supplemental observations 
from ground patrols also inform the assessment of local stability 
and ground movement. Such systems are used for the Camisea 
pipline in Perú [1]. 

 

 
FIGURE 7: INERTIAL MAPPING UNIT (IMU) TOOL [4] 
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5. RECENT ADVANCES 
Artificial intelligence (AI) and machine learning (ML) 

coupled with “big data” holds the promise of progressive 
improvement in models and predictive capabilities. “Big data” 
refers to the growing collection of readily-available data 
compiled by various vendors, government agencies and others, 
some free of charge and other for purchase.  

One utopian idea that has gained some traction recently is 
the elimination of the geotechnical SME from the process of 
predicting geohazard occurrence and progression, instead 
relying on AI and ML to determine mathematical functions that 
adequately describe the range of observations and data points for 
an area as a means of predicting future geohazard events and 
their impact on infrastructure. This “SME unsupervised” 
viewpoint relies entirely on AI and ML to develop working 
models. The issue with this viewpoint is no fundamental 
underlying mechanistic model against which to check 
reasonableness of predictions that fall outside of the range of the 
calibration dataset. If for example the relation of pore pressure to 
factor of safety is not framed in a physically-correct relation, 
predictions of effects of pore pressure outside of the range of the 
calibration dataset might be wildly erroneous. A geotechnical 
SME is therefore a critical element in the evolving use of new 
technology, a “SME supervised” viewpoint, that provides a basis 
for identifying unrealistic predictions or trends, diagnosing the 
cause, and improving the models used for prediction. 

Figure 8 illustrates the evolution of the role of geotechnical 
SME in relation to the advances in availability of quality data 
and computing power. The transition from a central role in 
identifying geohazards and assessing threat severity with little or 
no computer support to a current state of significantly improved 
access to data, computing power, monitoring technology, and 
support from software applications is a major step toward near 
real-time assessment of geohazard threats to linear 
infrastructure. The development of predictive models within an 
integrated assessment system is central to further advances 
toward increased use of AI and ML to support geotechnical SME 
judgment.  

 
6. KEY CONSIDERATIONS 

Key considerations in the advancement of predictive models 
and integrated geohazard management systems are: 

• Geologic model – a baseline geologic model of the 
pipeline route and a process to upgrade the model as 
new information is acquired is an essential component 
of an integrated system, with the model maturing with 
time to improve predictions of geohazard occurrence 
and behaviour 

• Causation vs correlation – physics-based models are 
intended to directly relate cause and effect, linking 
driving force to changes in key dynamic parameters 
such as pore pressure or groundwater table depth. 
Empirical models may be used to correlate conditions 
to outcomes but may blur the relation between cause 
and effect. 

• Static vs dynamic variables – defining the key variables 
that describe a geohazard mechanism, and 
understanding which variables are “static” (i.e., 
constant for the sake of predictions) and which are 
“dynamic” (i.e., change with time) is essential to 
identify data inputs, possible sources of information 
and monitoring requirements. 

• SME supervised vs unsupervised application of AI and 
ML – the adoption of “SME supervised” use of AI and 
ML is a prudent step toward a more powerful and 
efficient integrated system of predictive models, 
whereas “SME unsupervised” use of this technology 
increases the likelihood of unrealistic predictions, false 
alarms, and reduced availability of qualified 
geotechnical SMEs over the course of time if 
geotechnical SMEs are removed as gatekeepers of 
inputs and outputs from predictive models. 

• Data – data availability and cost have improved 
dramatically in recent years, but the quality and 
reliability of data must be evaluated for use by a 
qualified geotechnical SME, considering such aspects 
as pedigree, vintage, scale, reliability of third-party 
interpretation, algorithms used to generate interpreted 
datasets (e.g., landslide susceptibility maps), and 
intended use of the original interpreted data products. 

• Dataset refresh rate/interval and processing time – 
different sources of “dynamic” data have different 
refresh or resampling rates and processing time, making 
the goal of near real-time predictions challenging over 
a long, linear infrastructure route.  

• Data reconciliation and integration – data mining, 
checking and conversion protocols along with suitable 
metadata (e.g., map projection, datum, etc.) are required 
to ensure the quality and compatibility of information 
acquired from legacy studies, public sources and data 
vendors. 

• Analysis process and duration – the effort and duration 
required to process information from various sources 
and check results directly impacts the duration between 
data acquisition and prediction outcomes; efficient 
QA/QC checks are essential to ensure quality and 
minimize delay in predictions, and the ensuing issuance 
of warnings and emergency response if required. 

• Warning system integration – once critical sites have 
been identified and instrumented, establishing alarm 
thresholds and warning criteria based on alarms is a 
progressive refinement process to reduce false alarms 
and to avoid missed alarms (i.e., minimizing false 
negatives and false positives). 

• Barriers to collaborative research and development – a 
dedicated team of experts from various agencies and 
companies is one approach to research and 
development of predictive models and integrated 
systems for geohazard management, but issues such as  
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FIGURE 8: PROGRESSION OF PIPELINE GEOHAZARD MANAGEMENT ASSESSMENT METHODOLOGIES [31] 

 
intellectual property, non-disclosure, and non-
competition clauses in contracts must be navigated to 
fully leverage the mutual benefit arising from well-
crafted models and systems. 

Once a decision is made to develop an integrated system of 
predictive models, additional considerations include: 

• Deliverable – What is the desired end product - in-
house, third party or commercial? 

• Leverage – Does the development process involve 
integrating an existing GIS database and tools, and 
optimizing existing field and monitoring activities, or 
starting from a blank slate? 

• Timeline – What is the development schedule? Is it a 
staged development process? Are there interim 
products and target dates? Is prototype testing planned? 
Are there key deadlines? 

• Team – Will the development be undertaken by a single 
vendor, a collaboration of internal/external personnel, 
or an expert group collaboration? How will this be 
coordinated? 

• Commissioning – What is the process to validate any 
development (e.g., prototype testing)? What are the 
acceptance criteria? How will synthetic data be 
generated to calibrate models? 

• Stakeholder engagement – What assurances are 
required by stakeholders? Is there a requirement for 

external peer review? What is the plan for presentations 
and meetings to engage stakeholders? What is the 
process for stakeholder endorsement? 

 
7. CONCLUSION 

Pipeline integrity management continues to adapt and 
improve with the adoption of new technologies. The use of 
predictive models is becoming an essential part of an integrated 
system for geohazard management. The examples provided in 
this paper have focused on slope-related hazards, but the 
principles espoused are applicable to other geohazard 
mechanisms such as debris flow, ground subsidence, karst 
collapse, and other geohazard phenomena.  
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